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We study the perturbation of the unifam stream behind an oblique shock wave that 
simultaneously diffracts with an incident wave. The ‘deformation of the shock 
causes the assignment on its shape of a relation in partial derivatives of the unknown 
pressute parturbation, which determines the formulation of a Hilbert boundary-value 
problem for an analytic function. 

The classical “problem of diffraction of a plane wave” (by a stationary wedge of finite 
opening angle), which was solved in 1933 [l], is complicated by assuming that the wedge 
moves through the gas at supersonic speed. 

The problem was briefly considered earlier by the author @I; an integral of Cauchy 
type was used to construct its solution, It proves to be convenient here to use the gene- 
ralization obtained by the author p] of the solution of a diffraction problem that was 
constructed in [4,5] : on it are based the considerations and calculations of the pressure 
distribution of the wedge surface that are contained in the present paper. 

For the special case of a thin wedge moving at hypersonic speed, when Lighthill’s 
solution can be used, the examination was carried out in [6,7$ Conditions under which 
interaction is realized without diffraction were indicated in [8]; the analysis performed 
in b] was devoted to their small pemsrbations. 

1,. S&,W fir Id. A wedge of finite opening angle p moves with supersonic speed 
w, = &&,a00 in a quiescent ideal gas, forming an attacned oblique shock wave that 
forms an, angle~a~with its symmetry plane. At the instant t = ci it meets the front of 
a weak plane pmssure jump that is propagating through the sanm gas with a speed a00 
equal to the speed of sound and making au angle ~1 with the oblique shock front. The 
resulting motion is self-similar. The magnitude. E of the pressure jump in the incident 
wave, referred. to the pzessure in the quiescent gas, is chosen as the basic small parameter. 

Considerations are carried out in the plane perpendicular to the edge of the wedge, 
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where the shock plane and symmetry plane of the wedge are represented by a shock line 
and symmetry line. 

A typical picture of the flow arising for t > 0 is shown in Fig, 1. The gas particle 
lying at the tip of the wedge at t = 0 is displaced along the surface a distance LYeIt, 
if a, is the speed of sound and MaI the supersonic speed of the stream relative to the 
wedge in the region between the wedge and the oblique shock wave (region 1 in Fig. 1). 

Fig. 1 

However to formulate the bound- 
ary-value problem on the basis of 
the smallness of the perturbations, 
the boundary of the diffraction 
region is taken as the sectionABC 
of the undisturbed shock, and also 

the section DEF cut off of the wall by the Mach circle, together with its arcs A F and 
CD. 

The incident wave and the oblique shock, interacting, are refracted at the point of 
intersection L of their fronts by the finite angle 6, and the small angle 6,, respectively. 

An examination of such an interaction of shock waves is contained in the work of the 
author [ lo]; here it is necessary only to mention that regions 3 and 4 between the 
fronts of the refracting waves are divided by the line LE of tangential discontinuity. 

The front of the refracted wave either touches the arc FA at some point G , or is 
reflected from the wall so that this arc is touched at the point G by the reflected front, 
as shown in Fig. 1. Finally, it is possible that the wave that reflects from the wall inter- 
acts for a second time with the oblique shock wave, for a second time the refracted wave 
is reflected anew from the wa!l, and so on. In all cases, along the arc FA are adjoined 
to the diffraction region .ABCDEFA two regions of uniform flow divided by a weak 
wave. 

The cases also yield to examination in which the normal velocity of the front of the 

‘This particle is the center of the 
Mach circle, which is the leading 
edge of the resulting perturbation. 

The flows of the two sides of the 
symmetry line are independent. 
The oblique shock wave is a 
straight shock relative to the gas 
in regions 0 and I (Fig. 1). pro- 
pagating through them with super- 
and subsonic speeds respectively. 
Therefore the resulting perturba- 
tions cannot penetrate into region 
8, but they necessarily reach the 

shock on the side of region 1, and, 
superimposing on one another, 
cause its weak distortion in the 
section between the points of inter- 
section of the shock line with the 
Mach circle. 
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incident wave has a component in the direction of motion of the wedge, but diffraction 

will take place only under conditions such that the point of intersection of the continu- 

ation of the undisturbed incident front with the symmetry line moves faster than the 
wedge cw x > M,, where X = ‘p f cx is the angle of inclination of the incident 
front to the ‘symmetry line. 

From geometric and kinematic considerations it is not difficult to determine the angle 
6, of refraction of the incident wave at point L 

6, == cp - arcsin [hm2 (h2 - ma- + Vhz--1)1 
Here 

h = 1/h? (if M, sin x)2 + M2 sins cp - 2h1 M sin cp (1 + M,sin x) co9 y 

sin cp 

h 1= a,! al = (x + 1) M, ,’ J+GW,~ - (x - I)] 12 f (x - 1) MC21 

M c=IM,sina, m=Msinr, r=a--P 

The position of point G is fixed by the angle 8G’ = 5t / 2 - y - cp + 6,. The inci- 
dent wave produces in region 2 behind its front .a motion of the gas with speed w, and 
changes the speed of sound and density there. The values of these quantities are deter- 
mined by the equations 1-111 

“P, e (x - 1) PO0 
u:=-, 

%.3r)co 
Q=%+ Za p 9 pz=ps+~~ (1-i) 

0303 
Here y, is the polytropic exponent, and the subscript x, corresponds to region 0. 

With respect to the gas in, region 0 the oblique shock wave is a plane shock wave 

propagating with speed U and inducing behind its front motion of gas of densiq & and 

pressure p1 with speed Tr; the quantities pit p1 and Y are [4, 111: 

Reverting to the real flow, it is necessary to bear in mind that in spite of the assump- 
tion of small intensity of the incident wave the scheme described may not always be 
adequate, since for large angles (p the interaction can lose its regular character ; the 
same is true of reflection of the wave from the wall. 

For near critical values, reflection and interaction of the waves induces nonlinear 
effects [r2]. However in a wide range of determining parameters thecritical angles 

between the incident front and the wall will, because of its refraction by interaction, 
be greater than for diffraction from a stationary wedge. The large number of determin- 
ing parameters does not permit indicating this range in advance : for each specific case 
orientation in this question is achieved with the aid of the work [IO], which presents the 
limits of regular reflection and interaction. 

2. Formulation of boundrry-vriuo ptoblrm. In the plane perpendi- 
cular to the edge of the wedge it is convenient to associate a system of dimensionless 
rectangular coordinates with the gas particles in region 1 (cf. Fig. 1). locating its origin 
at point I?’ and directing the s-axis perpendicular and the y-axis parallel to the line 
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of the undisturbed oblique shock. The coordinates 5, Y may be regarded as obtained 
from the physical coordinates x’, y’ , t according to the equations 

x = 5’ I a,t, y = y’ I qt. 
For the dimensionless perturbation pressure, density, and components of gas velocity 

along the t- and y-axes, 

P=P’IP~~I~,P=P’J~I, u=ufla,,u=v’/a, 
where p’, F’, u’, v’ are the dimensional perturbations, the equations of plane unsteady 

self-similar gas motion have, after elimination of the function p,, the form [4, 131 

xa&i-ya$=g+g, ap xg+yc+-, x g + y g = g- (2.1) 

Conditions on the weakly distorted shock with equation of the front 5 = m i- f (y) , 

where f (y) is of order e, give together with (1.1) the following expressions for the 

perturbations : 

u=-&[(i+M-,')(i-yf')f z(q& x+cosf+&q] 
c c 

v=-M,f’fE~sincp (Ml=+-q 2Mc s (1 -J&-t)) (2.2) 

4 
p = x + 1 -= (M,(f-yyl’)+~(M,cosrp+~-~~)] 

alpI [ 

On the surface of the wedge, a condition on the normal derivative ap / dn = 0 is 
obtained from the third equation of the system (2.1). On the section GF of the arc FA 
(Fig. 1) the pressure perturbation is either double compared with that in region 3, or is 
absent if the front of the refracted wave touches the Mach circle without reflection 

from the wall. From (1.1) it follows that 

us = cos (cp - 6&s, us = sin (rp - WPs (2.3) 

where the subscripts 3,4, and (later) 5 refer to perturbations. The property of the line 
of tangential discontinuity leads to the condition 

(us - ~4~) dha - m2 = (uq - vS)m (2.4) 
After substitution of f(y) = - (y -f- f/hr -- m2)&, which corresponds to the section 

AL of the oblique shock, the relations (2.2) together with (2.3) and (2.4) form a system 
of linear equations for the quantities 6,) ug, UI, v8, vi and ps = p+. The equations 

giving their solution are omitted because of their awkwardness. The same relations (2.2). 
after substitution of f (y) = (9-M cos y)6,, corresponding to the section NC of the 
oblique shock, determine the unknown perturbations along the arc CD (in region 5). 
The quantity 6, is determined by the relation 

H-=tgP[3Wa(l fx+Mma) -i-1 +x+M,'1-2tga(Mm~-~) 

obtained from the perturbations from the equation expressing fJ in terms of M, and a 



208 S. M. Ter-Minasiants 

[ 111. The quantities AT and p’ are easily found by means of Eq. (1.2) 

ill’=+ 
( 

sinX-+MM, , 
) 

E co9 x 
P’= yM, 

Note 2.1. The values of the quantities ps = p4 and 6s can be determined exactly 

by means of the paper PO], and the quantities 6, and p5 by means of Eq. (1.2) and the 

equations of the work 041. 

3. Reduction to Hilbamt problem. It is known [ 1, 4, 131 that the system 
of equations (2.1) is, after elimination of the functions u and u, introduction of the polar 
coordinates r and (I (X = r cos 8, y = r sin ()) , and transformation of the radius 

vector r = 2R / (1 + R2) , transformed to the laplace equation for the function p 
inside the unit circle. Smyrl showed [?3] that a contact discontinuity does not invalidate 

this transformation, because the second derivative ofp normal to it remains discontinuous. 

The boundary of the diffraction region is thus deformed only on the section AC of the 
straight line r = m set (J , which transforms into the circle 2Rcos 8 = m (1 + R2), 
intersecting the circle f? = 1 orthogonally in the points A and C . The boundary con- 
ditions on this circle lead to condition on the single function p, obtained from the sys- 

tem (2.2) with the aid of the first two equations (2.1) [3, 4, 51 

M2+i 
A=C 

2% MC2 - (x - 1) ‘12 X-t1 
NC2 2 + (x - 1) MC2 

B=T 
MC=--1 

2 + (y - 1) MC2 

Here n and s are coordinates along the outer normal and tangent to the contour of the 
diffraction region in the vatiables R , 8. 

From consideration of Fig. 1 it is evident that a linear-fractional transformation, which 

moves points 1 and 2 to the origin and infinity,, respectively, transforms conformally 
the diffraction region ln the plane 5 = R expie onto the concentric semi-ring, since 

the circle 2Rcose = m (1 f R2) and the diameter DEF are orthogonal to the 
straight line I-2 and the unit circle, which cross on rays coming from the origin. 

Multiplication by a constant and subsequent taking of the logarithm of this transformation 

in superposition determine the function 

z = ln \---vi02 _ i02-e1 , e1 = arc sin fW1 - y 

exp iOr % 8, = it - arc sin M-l---r (3-Z) - 

and the rectangular region of diffraction in the plane z .= o + iz 

The form of the reflected front is shown by the right vertical side o a and the form 

of the Wall by the left side (o = 0) . The relation go = 8o’ - 1/2rr - y and Eqs. 
(3.2) determine the point G in the z-plane 

'TG = '/& {[I - COS (0 - 02)1 / 11 - COS (0 -fjl)]}, TG = o 

Substitution of the inverse of the transformation (3.2) at (a = I) 

(3.4) 

tg 8 = m,M-1 ctg r ( m, - M cos z) / (M - m,, cos T), m, = 7/l-(M2--1) tg2p( 

into the right side of (3.1) gives the condition on AC in the z-plane 
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tg rrn%M VW --((me-Mcost)sin% 
mrn$A (mo - M cos T)% - BM%@ y (M - mo cos z)¶ (3.5) 

In the z-plane 3~16s = b’pl&~ on CD and FA , and aplh ,= dplh and ap/an = 
= dplh on AC and DF. Therefore the conditions on CDFA , the assignment of 
piecewise constant values of p on CD and FA and zero value of ap / & on DEF _ 
can be written by means of the delta function as the single relation ap / do = p&z - 
- LG), whose right side expresses the doubling of the pressure on passing through the point 
G along the arc AF. 

The function p must satisfy two more conditions. The first of them is obtained by 

integrating withlrespect to y along the image of the shock front the relation obtained 
from (2.2). and the meaning of the second is clear at once from its writing; in the vari- 
ables o and i this condition has the form 

(3.6) 

Introducing the coefficients P, Q and S and letting P I Q = b (z) and S = 0 on 
At? and P =l,Q=OandS=p,6(z- zij on CD%A , it is bible finally to 
represent the whole system of boundary conditions by the single relation Pap / aa - 
- Qap / 6’7 = S, which sums up the formulation of the nonhomogeneous Hilbert 

boundary-value problem for the function I? (2) = dp / ao - iap / dT, analytic in the 

rectangle (3.3). 

4. Homogeneour problem. Method of Lighthill. The solution of the 
homogeneous problem,obtained from that formulated in Sect. 3 by supposing that S =1’0 
everywhere on, the contour, is denoted below by’I’,, (z) = ape / 80 - ‘tip’ / az and 

is assumed continuous in the region (3.3) up to and including the boundary. 
It can be verified that from (3.5) is obtained the representation for the argument of 

I’,, (a) on the image AC of the distorted section of the reflected front 

arg ro(z) = i arc tg [El tg %) 

j=l 
(4.1) 

E I,w,~ = d(M+mo) / (bJ - mo) (D,,, zk 1/D1,2a - 1) 

D =1-mm2f?l- ma- 4mB [(i-m%) A-rnbrj 
132 2 [(I -ma) A-mB 

The function r. (2) is found as the product of a constant subject to determination and 

of the functions analytic in (3.3) ro- (z) = CA (z) L (z), where argL\ (z) - 2n is equal 
to the right side of (4.1) on AC and zero on 'CDFA , and argL (z) -is-equal to 2n on 

AC and 3~ / 2 and n / 2 respectively on the parts of the section CDFA, from point 

C to the point z =z,andfrompoint ;=z,topointA. 

It is not difficult to show that the Fourier sine series for the function argr, (2 i- in)- 
- 2n in the interval 0 < z ( x obtained from (4.1) 

i g,sinnz, g, = -n 
?==I. 

-‘(4+‘). Fj=F 
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is equal to ImlnA (I + iz) on AC and zero on CDFA if we set 
CO 

A(z) = exp 2 g, cs ch nl ch nz 
n=l 

The general term of the series under the exponential has the bounds (on the real part) 

Ig,chnacosnzcschnZJ~Ig,IchnacschnZ~41g,(exp[-n(Z_o)l 

since I, n>O and u 2 0, and therefore shrill > l/4enz and Chna < en* ; it is dom- 

inated by the geometric progression with ratio I?-@). The imaginary part has just the 

same bounds. This shows the uniform convergence of the series to an analytic function 
in any closed region consisting of internal and boundary points of the rectangle (3.3). 
except for points of its right-hand vertical side. 

Followfng Lighthill we may represent the function A(z) on the contour by infinite 

products. 0n the image DF of the wall 

(4.2) 
A = fi [(l - Z!qn+bcos~+ qan+l)4 fJ(i -2q”+fFj~ost+ p+lFja)-l] 

n=O j=l 

The expression A(a) for points of the image of the Mach circle differs only in having 
the quantity cha in place of COST in (4.2). OII the image of the reflected front AC 

we obtain the expression 

]A(l+ir),=&(i-2q” 

4 

COST + qa,")"n (I - 2$Fj COST + Q'dnFj2)-1] 

n=o j=l 

where the prime indicates that the square root must be extracted from the first factor. 
The conformal transformation of the rectangle (3.3) onto the lower half plane 

0 = E + iq = - l/7&s (- iz, q) / 6, (- iz, q) (4.3) 

permits the function L (z) to be obtained at once. The points A, C, D, F and z = zO 
are transformed into the points E = T 1, % = f k and to (ao) of the real axis. The 
quantities 6rto 6,sre theta functions n5] ; the quantity k depends on the quantity q 

k’ = 1 -k’2,Jfk’=(1-2q+2qz-2q9+...) /(1t2q+2q~+2qe+..,) 

The function L (z), having the necessary piecewise constant argument along the real 
axis, is conveniently written in the form 

L(z)=~,(z)L,(z)L,(z)= [~(z)-%o(zo)1 ;;“21!,2) :y”o;j; (4.4) 

The product of the first two factors generalizes the corresponding functions in Lighthill’s 

solution. In the limiting (y + 0) symmetric case the Fourier coefficients contain terms 
generating a series converging to - II& (2); this factor is introduced to simplify the 
expression for y =# 0. in the sides DF, FA and AC of the rectangle (3.3) the func- 
tion(4.3) has the expression (4.51 

where lnqlnq’ = n 2. Substituting (4.5) into (4.4) gives the boundary values of the 
factors in the function L (2). For Lo- (z) and L,- (z) the result is obvious. For LIT (z) 
on D F, FA and A C we obtain the expressions 
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At an arbitrary point of the rectangle (3.3) 

L, (2) = - il/Z+,(- iz, q) / e4 (- iz, q) 

6, Solution. It is not difficult, having the function I’s (z), to write the solution 

of the original nonhomogeneous problem according to equations of a developed theory 
[lS, 1’71: a simple test confirms its correctness 

r (2) = 0 (z) [ - & p~$;) 4 (5G) ” w @) + CL0 (a)] (5.1) 

@ (4 = A (2) L, (21 L, (2) 

Here the derivative &,’ is given by the equation [15] 

L (SC) = 
2K k’fh (Q., 4’) 6% (Q, 9’) 

nk v/k 69’ (Q, q’) 

2Kln = (1 + 2qf 2q’ + 2q9, + . ..)” 

(5.2) 

Boundary values of (5.1) are given by the expression 

l?(z) = W(z) [ - 4 y$J;;’ 4 (sc) ‘_ 4 @) + CL,(Z)] + P*d (5 -- ac) (5.3) 

It follows from (5.3) that along AC 

8P 
--=-ImW+W cIw(l+ir)-Eo(zo)l-4(Ic)_e~~~} 0% 1 

(5.4) 
where 

Im~(Z+iz)=L,(Z+iz)L,(Z+iz)~h(Z+iz)~b(z)/~~b2(~)+1 

co = 
n I/s A (‘G) LZ (‘($ 6a &, q’) 

All the functions entering here are real, and are determined in Sects. 3 and 4. Substitu- 

tion of (5.4) and the quantity y = mtgl3, with regard to (3.4) and (3.6) and with the 
introduction of the notation 

-m"M1(62 - 61) 
Cl = 

VI I A (I -i- if) I La (2 + W b (4 
B , Y(z) = 

vbz (~1 + 1 61W, q) 

, ca = p5 _ p4 

leads to a system having the solution 
(5.5) 

The integrals 



212 S. M. Ter-Minasiants 

are determined numerically. Knowing Es (Zs), it is possible to determine z. by means 

of Eqs. (4.5) and a table of theta functions, but this is not required for the solution ; it is 

only necessary to substitute into (5.1) and (5.3) the values of c and go (zo) obtained 

from (5.5). 
Note 5.1. The a priori form of solution,given in the work of the author @] does 

not reflect the presence of the third zero of function l?s on the boundary of the rectan- 
gular region. A solution of the homogeneous problem that contains it is obtained by 

multiplying the function r. appearing there by the factor (o - go) / (o - 1 / k)s 
and then determining E. simultaneously with the constant multiplier under the same 
normalizing conditions and in the same way as in the present paper. 

6. Prraruro on wall. The pressure distribution is determined by integrating 
the partial derivative dp/h along the image of the wall DF’ in the z-plane 

and calculating the coordinate r = 1 (Mcosr - i) / (M - COST), 1, measured from 
point #E along the wall in the direction of point F (for z < arccos M-l) or in the 

direction of point D. 

Fig. 2 

Figure 2 shows the results of calculations carried out for 8 = 0.1465, /) = 15.5” 
and M, = 2.267. The values of the angle X .are shown on the graph. 

It is seen how significant changes in the magnitude, and thus a displacement of the 

exuemal value of the quantity p to point D and beyond it with increasing angle x , is 
associated with the position of the point .zo. 
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